Tuesday, July 27, 2010

NASA Spacecraft Camera Yields Most Accurate Mars Map

Valles Marineris, the "Grand Canyon of Mars," sprawls wide enough to reach from Los Angeles to nearly New York City, if it were located on Earth. The red outline box shows the location of a second, full-resolution image. Credit: NASA/JPL/Arizona State University

July 23, 2010

PASADENA, Calif. -- A camera aboard NASA's Mars Odyssey spacecraft has helped develop the most accurate global Martian map ever. Researchers and the public can access the map via several websites and explore and survey the entire surface of the Red Planet.
The map was constructed using nearly 21,000 images from the Thermal Emission Imaging System, or THEMIS, a multi-band infrared camera on Odyssey. Researchers at Arizona State University's Mars Space Flight Facility in Tempe, in collaboration with NASA's Jet Propulsion Laboratory in Pasadena, Calif., have been compiling the map since THEMIS observations began eight years ago.
The pictures have been smoothed, matched, blended and cartographically controlled to make a giant mosaic. Users can pan around images and zoom into them. At full zoom, the smallest surface details are 100 meters (330 feet) wide. While portions of Mars have been mapped at higher resolution, this map provides the most accurate view so far of the entire planet.
The new map is available at: http://www.mars.asu.edu/maps/?layer=thm_dayir_100m_v11 .
Advanced users with large bandwidth, powerful computers and software capable of handling images in the gigabyte range can download the full-resolution map in sections at: http://www.mars.asu.edu/data/thm_dir_100m .
"We've tied the images to the cartographic control grid provided by the U.S. Geological Survey, which also modeled the THEMIS camera's optics," said Philip Christensen, principal investigator for THEMIS and director of the Mars Space Flight Facility. "This approach lets us remove all instrument distortion, so features on the ground are correctly located to within a few pixels and provide the best global map of Mars to date."
Working with THEMIS images from the new map, the public can contribute to Mars exploration by aligning the images to within a pixel's accuracy at NASA's "Be a Martian" website, which was developed in cooperation with Microsoft Corp. Users can visit the site at: http://beamartian.jpl.nasa.gov/maproom#/MapMars .
"The Mars Odyssey THEMIS team has assembled a spectacular product that will be the base map for Mars researchers for many years to come," said Jeffrey Plaut, Odyssey project scientist at JPL. "The map lays the framework for global studies of properties such as the mineral composition and physical nature of the surface materials."
Other sites build upon the base map. At Mars Image Explorer, which includes images from every Mars orbital mission since the mid-1970s, users can search for images using a map of Mars at: http://themis.asu.edu/maps .
"The broad purpose underlying all these sites is to make Mars exploration easy and engaging for everyone," Christensen said. "We are trying to create a user-friendly interface between the public and NASA's Planetary Data System, which does a terrific job of collecting, validating and archiving data."
Mars Odyssey was launched in April 2001 and reached the Red Planet in October 2001. Science operations began in February 2002. The mission is managed by JPL for NASA's Science Mission Directorate in Washington. Lockheed Martin Space Systems in Denver is the prime contractor for the project and built the spacecraft. NASA's Planetary Data System, sponsored by the Science Mission Directorate, archives and distributes scientific data from the agency's planetary missions, astronomical observations, and laboratory measurements. 

NASA Telescope Finds Elusive Buckyballs in Space for First Time

NASA's Spitzer Space Telescope has at last found buckyballs in space, as illustrated by this artist's conception. Image credit: NASA/JPL-Caltech

July 22, 2010
PASADENA, Calif. - Astronomers using NASA's Spitzer Space Telescope have discovered carbon molecules, known as "buckyballs," in space for the first time. Buckyballs are soccer-ball-shaped molecules that were first observed in a laboratory 25 years ago.

They are named for their resemblance to architect Buckminster Fuller's geodesic domes, which have interlocking circles on the surface of a partial sphere. Buckyballs were thought to float around in space, but had escaped detection until now.

"We found what are now the largest molecules known to exist in space," said astronomer Jan Cami of the University of Western Ontario, Canada, and the SETI Institute in Mountain View, Calif. "We are particularly excited because they have unique properties that make them important players for all sorts of physical and chemical processes going on in space." Cami has authored a paper about the discovery that will appear online Thursday in the journal Science.

Buckyballs are made of 60 carbon atoms arranged in three-dimensional, spherical structures. Their alternating patterns of hexagons and pentagons match a typical black-and-white soccer ball. The research team also found the more elongated relative of buckyballs, known as C
70, for the first time in space. These molecules consist of 70 carbon atoms and are shaped more like an oval rugby ball. Both types of molecules belong to a class known officially as buckminsterfullerenes, or fullerenes.

The Cami team unexpectedly found the carbon balls in a planetary nebula named Tc 1. Planetary nebulas are the remains of stars, like the sun, that shed their outer layers of gas and dust as they age. A compact, hot star, or white dwarf, at the center of the nebula illuminates and heats these clouds of material that has been shed.

The buckyballs were found in these clouds, perhaps reflecting a short stage in the star's life, when it sloughs off a puff of material rich in carbon. The astronomers used Spitzer's spectroscopy instrument to analyze infrared light from the planetary nebula and see the spectral signatures of the buckyballs. These molecules are approximately room temperature -- the ideal temperature to give off distinct patterns of infrared light that Spitzer can detect. According to Cami, Spitzer looked at the right place at the right time. A century from now, the buckyballs might be too cool to be detected.

The data from Spitzer were compared with data from laboratory measurements of the same molecules and showed a perfect match.

"We did not plan for this discovery," Cami said. "But when we saw these whopping spectral signatures, we knew immediately that we were looking at one of the most sought-after molecules."

In 1970, Japanese professor Eiji Osawa predicted the existence of buckyballs, but they were not observed until lab experiments in 1985. Researchers simulated conditions in the atmospheres of aging, carbon-rich giant stars, in which chains of carbon had been detected. Surprisingly, these experiments resulted in the formation of large quantities of buckminsterfullerenes. The molecules have since been found on Earth in candle soot, layers of rock and meteorites.

The study of fullerenes and their relatives has grown into a busy field of research because of the molecules' unique strength and exceptional chemical and physical properties. Among the potential applications are armor, drug delivery and superconducting technologies.

Sir Harry Kroto, who shared the 1996 Nobel Prize in chemistry with Bob Curl and Rick Smalley for the discovery of buckyballs, said, "This most exciting breakthrough provides convincing evidence that the buckyball has, as I long suspected, existed since time immemorial in the dark recesses of our galaxy."

Previous searches for buckyballs in space, in particular around carbon-rich stars, proved unsuccessful. A promising case for their presence in the tenuous clouds between the stars was presented 15 years ago, using observations at optical wavelengths. That finding is awaiting confirmation from laboratory data. More recently, another Spitzer team reported evidence for buckyballs in a different type of object, but the spectral signatures they observed were partly contaminated by other chemical substances.

Wednesday, July 21, 2010

Cassini Sees Moon Building Giant Snowballs in Saturn Ring

This mosaic of images from NASA's Cassini spacecraft shows three fan-like structures in Saturn's tenuous F ring. Such "fans" suggest the existence of additional objects in the F ring. Image credit: NASA/JPL/SSI 

July 20, 2010
While orbiting Saturn for the last six years, NASA's Cassini spacecraft has kept a close eye on the collisions and disturbances in the gas giant's rings. They provide the only nearby natural laboratory for scientists to see the processes that must have occurred in our early solar system, as planets and moons coalesced out of disks of debris.

New images from Cassini show icy particles in Saturn's F ring clumping into giant snowballs as the moon Prometheus makes multiple swings by the ring. The gravitational pull of the moon sloshes ring material around, creating wake channels that trigger the formation of objects as large as 20 kilometers (12 miles) in diameter.

"Scientists have never seen objects actually form before," said Carl Murray, a Cassini imaging team member based at Queen Mary, University of London. "We now have direct evidence of that process and the rowdy dance between the moons and bits of space debris."

Murray discussed the findings today (July 20, 2010) at the Committee on Space Research meeting in Bremen, Germany, and they are published online by the journal Astrophysical Journal Letters on July 14, 2010. A new animation based on imaging data shows how one of the moons interacts with the F ring and creates dense, sticky areas of ring material.

Saturn's thin, kinky F ring was discovered by NASA's Pioneer 11 spacecraft in 1979. Prometheus and Pandora, the small "shepherding" moons on either side of the F ring, were discovered a year later by NASA's Voyager 1. In the years since, the F ring has rarely looked the same twice, and scientists have been watching the impish behavior of the two shepherding moons for clues.

Prometheus, the larger and closer to Saturn of the two moons, appears to be the primary source of the disturbances. At its longest, the potato-shaped moon is 148 kilometers (92 miles) across. It cruises around Saturn at a speed slightly greater than the speed of the much smaller F ring particles, but in an orbit that is just offset. As a result of its faster motion, Prometheus laps the F ring particles and stirs up particles in the same segment once in about every 68 days.

"Some of these objects will get ripped apart the next time Prometheus whips around," Murray said. "But some escape. Every time they survive an encounter, they can grow and become more and more stable."

Cassini scientists using the ultraviolet imaging spectrograph previously detected thickened blobs near the F ring by noting when starlight was partially blocked. These objects may be related to the clumps seen by Murray and colleagues.

The newly-found F ring objects appear dense enough to have what scientists call "self-gravity." That means they can attract more particles to themselves and snowball in size as ring particles bounce around in Prometheus's wake, Murray said. The objects could be about as dense as Prometheus, though only about one-fourteenth as dense as Earth.

What gives the F ring snowballs a particularly good chance of survival is their special location in the Saturn system. The F ring resides at a balancing point between the tidal force of Saturn trying to break objects apart and self-gravity pulling objects together. One current theory suggests that the F ring may be only a million years old, but gets replenished every few million years by moonlets drifting outward from the main rings. However, the giant snowballs that form and break up probably have lifetimes of only a few months.

The new findings could also help explain the origin of a mysterious object about 5 to 10 kilometers (3 to 6 miles) in diameter that Cassini scientists spotted in 2004 and have provisionally dubbed S/2004 S 6. This object occasionally bumps into the F ring and produces jets of debris.

"The new analysis fills in some blanks in our solar system's history, giving us clues about how it transformed from floating bits of dust to dense bodies," said Linda Spilker, Cassini project scientist at NASA's Jet Propulsion Laboratory in Pasadena, Calif. "The F ring peels back some of the mystery and continues to surprise us."

The late Kevin Beurle was made the honorary first author on this paper because of his contributions in developing software and designing observation sequences for this research. He died in 2009.

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. JPL, a division of the California Institute of Technology in Pasadena, manages the mission for NASA's Science Mission Directorate, Washington, D.C. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The imaging operations center is based at the Space Science Institute in Boulder, Colo.

NASA Goes Deep in Search of Extreme Environments

A team recovers the hybrid robotic vehicle Nereus aboard the research vessel Cape Hatteras during a partially NASA-funded expedition to the Mid-Cayman Rise in October 2009. A search for new hydrothermal vent sites along the 110-kilometer-long ridge, the expedition featured the first use of Nereus in "autonomous," or free-swimming, mode. Image credit: Woods Hole Oceanographic Institution

July 20, 2010
An expedition partially funded by NASA, part of a program to search extreme environments for geological, biological and chemical clues to the origins and evolution of life, has discovered the deepest known hydrothermal vent in the world, nearly 5,000 meters (16,400 feet) below the surface of the western Caribbean Sea. The research will help extend our understanding of the limits to which life can exist on Earth and help prepare for future efforts to search for life on other planets.

An interdisciplinary team led by Woods Hole Oceanographic Institution, Woods Hole, Mass., and including research scientist Max Coleman of NASA's Jet Propulsion Laboratory, Pasadena, Calif., sailed to the western Caribbean in October 2009 aboard the research vessel Cape Hatteras. Using sensors mounted on equipment and robotic vehicles, they searched for deep-sea hydrothermal vents along the 110-kilometer-long (68-mile-long) Mid-Cayman Rise, an ultra-slow spreading ridge located in the Cayman Trough -- the deepest point in the Caribbean Sea. Results of their research are published this week in the Proceedings of the National Academy of Sciences.

While high-temperature submarine vents were first discovered more than 30 years ago, the majority of the global Mid-Ocean Ridge, an underwater mountain range that snakes its way for more than 56,000 kilometers (35,000 miles) between Earth's continents, remains unexplored for hydrothermal activity. While such activity occurs on spreading centers all around the world, scientists are particularly interested in Earth's ultra-slow spreading ridges, like the Mid-Cayman Rise, which may host systems that are particularly relevant to pre-biotic chemistry and the origins of life. The Mid-Cayman Rise is part of the tectonic boundary between the North American and Caribbean Plates. At the boundary where the plates are being pulled apart, new material wells up from Earth's interior to form new crust on the seafloor.

The researchers found that the Mid-Cayman Rise hosts at least three discrete hydrothermal sites, each representing a different type of water-rock interaction. The diversity of the newly discovered vent types, their geologic settings and their relative geographic isolation make the Mid-Cayman Rise a unique environment in the world's ocean.

"This was probably the highest-risk expedition I have ever undertaken," said chief scientist Chris German, a Woods Hole Oceanographic Institution geochemist who has pioneered the use of autonomous underwater vehicles to search for hydrothermal vent sites. "We know hydrothermal vents appear along ridges approximately every 100 kilometers [62 miles]. But this ridge crest is only 100 kilometers long, so we should only have expected to find evidence for one site at most. So finding evidence for three sites was quite unexpected - but then finding out that our data indicated that each site represents a different style of venting - one of every kind known, all in pretty much the same place - was extraordinarily cool."

The team identified the deepest known hydrothermal vent site and two additional distinct types of vents, one of which is believed to be a shallow, low-temperature vent of a kind that has been reported only once previously - at the "Lost City" site in the mid-Atlantic Ocean.

"Being the deepest, these hydrothermal vents support communities of organisms that are the furthest from the ocean surface and sources of energy like sunlight," said JPL co-author Coleman. "Most life on Earth is sustained by food chains that begin with sunlight as their energy source. That's not an option for possible life deep in the ocean of Jupiter's icy moon Europa, prioritized by NASA for future exploration. However, organisms around the deep vents get energy from the chemicals in hydrothermal fluid, a scenario we think is similar to the seafloor of Europa, and this work will help us understand what we might find when we search for life there."

"We were particularly excited to find compelling evidence for high-temperature venting at almost 5,000 meters depth," said Julie Huber, a scientist in the Josephine Bay Paul Center at the Marine Biological Laboratory in Woods Hole. "We have absolutely zero microbial data from high-temperature vents at this depth." Huber and Marine Biological Laboratory postdoctoral scientist Julie Smith participated in this cruise to collect samples, and all of the microbiology work for this paper was carried out in Huber's laboratory. "With the combination of extreme pressure, temperature and chemistry, we are sure to discover novel microbes in this environment," Huber added. "We look forward to returning to the Cayman and sampling these vents in the near future. We are sure to expand the known growth parameters and limits for life on our planet by exploring these new sites." 

Tuesday, July 20, 2010

Video Camera Will Show Mars Rover's Touchdown

This Mars Descent Imager (MARDI) camera will fly on the Curiosity rover of NASA's Mars Science Laboratory mission. 
Image credit: NASA/JPL-Caltech/Malin Space Science Systems

July 19, 2010
A downward-pointing camera on the front-left side of NASA's Curiosity rover will give adventure fans worldwide an unprecedented sense of riding a spacecraft to a landing on Mars.

The Mars Descent Imager, or MARDI, will start recording high-resolution video about two minutes before landing in August 2012. Initial frames will glimpse the heat shield falling away from beneath the rover, revealing a swath of Martian terrain below illuminated in afternoon sunlight. The first scenes will cover ground several kilometers (a few miles) across. Successive images will close in and cover a smaller area each second.

The full-color video will likely spin, then shake, as the Mars Science Laboratory mission's parachute, then its rocket-powered backpack, slow the rover's descent. The left-front wheel will pop into view when Curiosity extends its mobility and landing gear.

The spacecraft's own shadow, unnoticeable at first, will grow in size and slide westward across the ground. The shadow and rover will meet at a place that, in the final moments, becomes the only patch of ground visible, about the size of a bath towel and underneath the rover.

Dust kicked up by the rocket engines during landing may swirl as the video ends and Curiosity's surface mission can begin.

All of this, recorded at about four frames per second and close to 1,600 by 1,200 pixels per frame, will be stored safely into the Mars Descent Imager's own flash memory during the landing. But the camera's principal investigator, Michael Malin of Malin Space Science Systems, San Diego, and everyone else will need to be patient. Curiosity will be about 250 million kilometers (about 150 million miles) from Earth at that point. It will send images and other data to Earth via relay by one or two Mars orbiters, so the daily data volume will be limited by the amount of time the orbiters are overhead each day.

"We will get it down in stages," said Malin. "First we'll have thumbnails of the descent images, with only a few frames at full scale."

Subsequent downlinks will deliver additional frames, selected based on what the thumbnail versions show. The early images will begin to fulfill this instrument's scientific functions. "I am really looking forward to seeing this movie. We have been preparing for it a long time," Malin said. The lower-resolution version from thumbnail images will be comparable to a YouTube video in image quality. The high-definition version will not be available until the full set of images can be transmitted to Earth, which could take weeks, or even months, sharing priority with data from other instruments."

The Mars Descent Imager will provide the Mars Science Laboratory team with information about the landing site and its surroundings. This will aid interpretation of the rover's ground-level views and planning of initial drives. Hundreds of the images taken by the camera will show features smaller than what can be discerned in images taken from orbit.

"Each of the 10 science instruments on the rover has a role in making the mission successful," said John Grotzinger of the California Institute of Technology in Pasadena, chief scientist for the Mars Science Laboratory. "This one will give us a sense of the terrain around the landing site and may show us things we want to study. Information from these images will go into our initial decisions about where the rover will go."

The nested set of images from higher altitude to ground level will enable pinpointing Curiosity's location even before an orbiter can photograph the rover on the surface.

Malin said, "Within the first day or so, we'll know where we are and what's near us. MARDI doesn't do much for six-month planning -- we'll use orbital data for that -- but it will be important for six-day and 16-day planning."

In addition, combining information from the descent images with information from the spacecraft's motion sensors will enable calculating wind speeds affecting the spacecraft on its way down, an important atmospheric science measurement. The descent data will later serve in designing and testing future landing systems for Mars that could add more control for hazard avoidance.

After landing, the Mars Descent Imager will offer the capability to obtain detailed images of ground beneath the rover, for precise tracking of its movements or for geologic mapping. The science team will decide whether or not to use that capability. Each day of operations on Mars will require choices about how to budget power, data and time.

Last month, spacecraft engineers and technicians re-installed the Mars Descent Imager onto Curiosity for what is expected to be the final time, as part of assembly and testing of the rover and other parts of the Mars Science Laboratory flight system at NASA's Jet Propulsion Laboratory, Pasadena, Calif. Besides the rover itself, the flight system includes the cruise stage for operations between Earth and Mars, and the descent stage for getting the rover from the top of the Martian atmosphere safely to the ground.

Malin Space Science Systems delivered the Mars Descent Imager in 2008, when NASA was planning a 2009 launch for the mission. This camera shares many design features, including identical electronic detectors, with two other science instruments the same company is providing for Curiosity: the Mast Camera and the Mars Hand Lens Imager. The company also provided descent imagers for NASA's Mars Polar Lander, launched in 1999, and Phoenix Mars Lander, launched in 2007. However, the former craft was lost just before landing and the latter did not use its descent imager due to concern about the spacecraft's data-handling capabilities during crucial moments just before landing. 

Monday, July 19, 2010

French scientists crack secrets of Mona Lisa

PARIS – The enigmatic smile remains a mystery, but French scientists say they have cracked a few secrets of the "Mona Lisa." French researchers studied seven of the Louvre Museum's Leonardo da Vinci paintings, including the "Mona Lisa," to analyze the master's use of successive ultrathin layers of paint and glaze - a technique that gave his works their dreamy quality.

Specialists from the Center for Research and Restoration of the Museums of France found that da Vinci painted up to 30 layers of paint on his works to meet his standards of subtlety. Added up, all the layers are less than 40 micrometers, or about half the thickness of a human hair, researcher Philippe Walter said Friday.

The technique, called "sfumato," allowed da Vinci to give outlines and contours a hazy quality and create an illusion of depth and shadow. His use of the technique is well-known, but scientific study on it has been limited because tests often required samples from the paintings.

The French researchers used a noninvasive technique called X-ray fluorescence spectroscopy to study the paint layers and their chemical composition.

They brought their specially developed high-tech tool into the museum when it was closed and studied the portraits' faces, which are emblematic of sfumato. The project was developed in collaboration with the European Synchrotron Radiation Facility in Grenoble.

The tool is so precise that "now we can find out the mix of pigments used by the artist for each coat of paint," Walter told The Associated Press. "And that's very, very important for understanding the technique."

The analysis of the various paintings also shows da Vinci was constantly trying out new methods, Walter said. In the "Mona Lisa," da Vinci used manganese oxide in his shadings. In others, he used copper. Often he used glazes, but not always.

The results were published Wednesday in Angewandte Chemie International Edition, a chemistry journal.

Tradition holds that the "Mona Lisa" is a painting of Lisa Gherardini, wife of Florentine merchant Francesco del Giocondo, and that da Vinci started painting it in 1503. Giorgio Vasari, a 16th-century painter and biographer of da Vinci and other artists, wrote that the perfectionist da Vinci worked on it for four years.